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Precision Measurements of Absorption and 
Refractive-Index Using an Atomic Candle 

Tabitha Swan-Wood, John G. Coffer, and James C. Camparo 

Abstract—Across a broad range of disciplines, the accurate de- 
termination of an electromagnetic wave's amplitude (either ab- 
solute or relative) has considerable relevance. Here, we demon- 
strate a novel and potentially very precise method for making in- 
tensity measurements based on the atomic stabilization of electro- 
magnetic field-strength. For ease of reference, and by analogy to 
atomic clocks, we refer to this field-strength stabilization system as 
an atomic candle. While the candle's original purpose was to create 
a field with long-term intensity stability, its very nature makes it 
ideal for detecting subtle amplitude changes in strong electromag- 
netic fields, a problem that is fundamentally different from de- 
tecting weak signals in the presence of noise. In this paper, we 
discuss proof-of-principle experiments demonstrating the atomic 
candle's ability to make precise measurements of absorption coef- 
ficients and indices of refraction. 

Index Terms—Absorption coefficient, amplitude stabilization, 
atomic candle, atomic clocks, dielectric constant, index of refrac- 
tion, magnetic resonance. 

I. INTRODUCTION 

THE "SIMPLE" measurement of electromagnetic intensity 
is fundamental for much of experimental science. For ex- 

ample, in quantum optics, the QED interaction between a col- 
ored vacuum and a quantum system can be probed by exam- 
ining the intensity of light transmitted through a high-Q cavity 
[1]. In atomic physics, the transmission of light through a res- 
onant vapor can be used to measure atomic collision cross sec- 
tions [2], while in analytical chemistry, transmitted light can re- 
veal the presence of trace compounds [3]. New means for pre- 
cisely measuring both the relative and absolute strength of an 
electromagnetic field, especially ones with advantageous and 
unique characteristics, are therefore of considerable relevance 
for a great many researchers. 

We recently demonstrated that it is possible to actively sta- 
bilize the amplitude of an electromagnetic field to an atomic 
Rabi-resonance in much the same way as the frequency of a field 
is locked to a resonance between energy eigenstates in an atomic 
clock [4]. For ease of reference, and because of its analogy with 
the atomic clock, we refer to a field stabilized in this fashion 
as an "atomic candle." With regard to intensity measurements, 
the electromagnetic wave produced by an atomic candle has at 
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least two unique characteristics. First, the field-amplitude of the 
atomic candle is essentially referenced to a dressed-atom energy 
level transition; hence, different candles at remote locations can 
produce fields with the exact same intensity. Additionally, the 
long-term intensity stability of the field produced by the candle 
has the potential for atomic-clock-like performance [5]. 

The atomic candle's operation derives from the response 
of a quantum system to a modulated field; specifically, when 
an atom interacts with a phase-modulated resonant field, the 
atomic system's population oscillates at twice the phase-modu- 
lation frequency 2i/m [6]. Of importance for the atomic candle 
is the fact that the amplitude of these population oscillations 
is a resonant function of field-strength, reaching a maximum 
when the Rabi frequency associated with the atomic transition 
matches 2vm. This resonant behavior of the oscillation's 
amplitude is what is meant by a Rabi-resonance, and with its 
observation comes an ability to lock the Rabi frequency (i.e., 
the field-strength) to 2vm via an atomic signal.1 

Our primary motivation in developing the atomic candle was 
to ameliorate a problem with the long-term stability of gas-cell 
atomic clocks [7], and to this end we constructed a microwave 
candle based on the ground state hyperfine transition of Rb87 

at 6834.7 MHz [5]. Our atomic candle's microwave power sta- 
bility for averaging times r greater than 10sisirAp/p(T) = 9x 
10"' + 10~'\/T, where a\piP is the Allan variance [8] of the 
power fluctuations relative to the Rabi-resonance peak. In order 
to achieve this tight lock, it is necessary for the atomic candle 
to detect and respond to very small changes in field intensity. 
Typically, these changes are stochastic in nature. However, they 
could just as well be deterministic and under experimental con- 
trol, in which case the candle would provide a sensitive detector 
of subtle field-strength changes. As a proof-of-principle exper- 
iment to illustrate this potential, we have used the field of our 
microwave atomic candle to measure the absorption coefficient 
and refractive index of liquid water and acetone at 6.8 GHz. 

II. EXPERIMENT 

A. The Atomic Candle 

Fig. 1 shows a schematic outline of our experimental arrange- 
ment, where open boxes correspond to the atomic candle proper. 
The heart of our candle is a resonance-cell containing isotopi- 
cally pure Rb87 and 100 Torr of N2 placed in the vicinity of 
a microwave horn. As illustrated in Fig. 2, the microwaves are 
resonant with the (F - 2. mF = 0) - (1, 0) ground state 

'Note that 2i/m may be referenced to a cesium atomic clock and hence the 
ground state hyperfine splitting of Cs13' (i.e., the SI definition of the second). 

0018-9456/01 $10.00 © 2001 IEEE 
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Fis. I. Experimental arrangement. Open boxes correspond to the atomic candle proper, while filled boxes correspond to the power measurement used in the 
absorption measurements. LO. RF. and IF correspond to the standard local-oscillator, radio-frequency, and intermediate-frequency ports of the mixer, respectively 
[ll]. 

52P 3/2 

780.2 nm 

F=1 

Fig. 2. Relevant energy levels of Rb*T. Tuning the laser to excite atoms out 
of the F = 2 hyperfine ievel. optical pumping creates a population imbalance 
between the (F = 2. mF=oM).0) energy levels. A microwave signal resonant 
with the 0-0 hyperfine transition causes atoms to return to the absorbing state, 
thereby decreasing the light transmitted by the vapor. 

hyperfine transition of Rb87 (i.e., the 0-0 transition). The cylin- 
drical cell has a diameter of 2.5 cm and a length of 3.9 cm. and 
braided windings wrapped around the cell heat it to approxi- 
mately 35 °C. The cell is centrally located in a set of three per- 
pendicular Helmholtz coil pairs: two pairs zero out the Earth's 
magnetic field while the third (~300 mG) provides a quantiza- 
tion axis. Light from a DBR diode laser is tuned to the Rb D2 

transition at 780.2 nm [9], [19] so as to excite atoms out of the 
F = 2 ground stale hyperfine sublevel. The laser beam is atten- 
uated by neutral density filters prior to passing through the reso- 
nance cell so that the intensity entering the cell is ~60 //W/cirr 
in a beam diameter of 0.8 cm. The transmission of light through 

the vapor is monitored with a Si photodiode, and the propagation 
direction of the laser beam is parallel to the atoms' quantization 
axis and the microwave magnetic field. 

In the absence of microwaves resonant with the 0-0 hyper- 
fine transition, depopulation optical pumping [10] reduces the 
density of atoms in the F = 2 absorbing state, and conse- 
quently increases the amount of light transmitted through the 
vapor. However, when the resonant microwave signal is present, 
atoms return to the F = 2 state, thereby reducing the amount of 
transmitted light. The transmitted laser intensity thus acts as a 
measure of atomic population in the F = 2 level, so that any mi- 
crowave-induced oscillation of this population will be observed 
as oscillations in the transmitted light. 

The microwaves are derived from a voltage-controlled-crystal- 
oscillator (VCXO), whose output at ~107 MHz is multiplied 
up into the gigahertz regime. The microwaves are attenuated by 
the combination of a voltage-controlled-attenuator (VCA) and a 
fixed attenuator (labeled as -dB in Fig. 1) before being amplified 
by a +30 dB solid-state amplifier. A 419-Hz sinusoidal signal 
is added to a dc voltage in order to provide the VCXO's control 
voltage Vc. The dc level of Vc tunes the average microwave 
frequency to the 0-0 hyperfine resonance, while the sine wave 
provides microwave frequency (i.e., phase) modulation. Fol- 
lowing the VCA, the microwave signal is split in two. One-half 
of the signal proceeds to the horn, which broadcasts the signal 
to the resonance cell, while the other half is used to directly 
monitor the microwave power supplied to the horn. 

As already mentioned, the Rabi-resonance is manifested in 
the atoms' second harmonic response to the phase-modulated 
microwave field. The output of the photodiode is thus sent to a 
lock-in amplifier (labeled as #1 in Fig. 1) which is referenced 
to the phase-modulation's second harmonic (i.e., 838 Hz). The 
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photodiocle/lock-in combination acts as a low-pass detector of 
the atoms" second harmonic signal. For the atomic candle cor- 
rection signal, the microwave power is modulated at 7.3 Hz by 
applying a sinusoidal signal to the VCA's control voltage. The 
atoms' Rabi-resonance response to the modulated microwave 
power is monitored in a heterodyne fashion with the aid of 
lock-in #2, whose output becomes our field-strength correction 
signal. Adding this correction signal to the VCA control voltage 
closes the field-strength feedback control loop. 

B. Measurements of Electromagnetic Field Transmission 

For the absorption/refractive-index measurement portion of 
the experiment, the signal was chopped at 0.1 Hz prior to am- 
plification by a second +30 dB amplifier, and following ampli- 
fication the signal was again split in two. (Low-frequency chop- 
ping allowed us to discriminate against a slow baseline drift in 
this power-measurement portion of the experiment.) The two 
signals were then combined in a mixer [11], creating a dc signal 
whose amplitude was proportional to the power of the original 
microwave signal, and hence proportional to the power entering 
the horn.2 If an attenuating material (in our case a dielectric 
liquid) is placed between the horn and the resonance cell, the mi- 
crowave power reaching the Rb atoms will be reduced. As a con- 
sequence, the atomic candle will feed a correction signal back to 
the VCA that just compensates for this attenuation: The magni- 
tude of the attenuated power is therefore detected as an increase 
in the microwave power supplied to the horn. Ideally, we would 
have used the correction signal from lock-in #2 to measure the 
microwave attenuation, as microwave power changes then ap- 
pear on a near-zero signal background. This approach was prob- 
lematic in our experiment due to limits in the dynamic range of 
the electronics associated with our VCA. However, we also felt 
that measuring the power supplied to the horn directly provides 
a cleaner demonstration of this atomic candle application.' 

We employed research grade acetone and water as attenuating 
materials for our microwave signal. These were contained in a 
14.5 cm diameter open Pyrex dish placed between the horn and 
the resonance cell. The dish rested on a 1.8 cm thick sheet of 
polyurethane microwave absorber, which had a specified mi- 
crowave attenuation coefficient greater than —20 dB. The sheet 
was large enough to ensure that sidelobes from the horn were 
attenuated. A small ~3 cm2 hole was cut in the sheet directly 
under the center of the horn, so that only microwaves incident 
normally to the liquid would pass into the resonance cell. During 
the course of the experiment, the acetone and water tempera- 
tures remained constant at 21 °C and 23 °C, respectively, with 
no observed rise in temperature due to microwave absorption. 
The liquid's depth d was determined by adding known volumes 
of liquid to the dish, and then correcting these depth values for 
loss due to evaporation. 

2lf 1 Lo and VRF [both equal to \/F7sm(^'f)] are the microwave signals 
input to the mixer, then the mixer's output VIF is just TIF = l'L0 • VRF = 
P„/2(l - cos(2urf)). 

3lt might be argued that measuring the power supplied to the horn in the 
fashion of Fig. 1 does not really provide any advantage over more traditional 
techniques, as we are still making a conventional power measurement. How- 
ever, one of the advantages associated with the atomic candle is its potential 
for very long-term stability. Hence, in the specific scheme of Fig. I the power 
measurement signal may be averaged over long time intervals to improve the 
measurement precision. 

Subsequent to performing an absorption/refractive-index ex- 
periment, we measured the rate-of-change of power supplied 
to the horn dP/dt, resulting from evaporation alone.4 At fixed 
temperature and pressure, the rate of acetone evaporation is con- 
stant, since this primarily depends on the acetone vapor pres- 
sure just above the liquid surface. In the case of water, the rate 
of evaporation is also a constant, but additionally depends on 
the relative humidity [12]. Consequently, by noting the times of 
liquid addition in the present experiment, we could use the re- 
sults from these subsequent experiments to correct the relative 
power measurements for evaporative loss. 

At microwave wavelengths, macroscopic depths of liquid act 
as a thin film. Therefore, the power reaching the resonance cell 
•flock (i.e., the locked power of the atomic candle) is given by 

[13] 

Po 
lock \T\- 

•{1 + 2ii?,|e-adcos[47m<i/A + 8} + \R\2e.-2ad}. 

(1) 

where 
P„ measured power supplied to the horn; 
B. and T parameters associated with the reflection and 

transmission, respectively, of the liquid at its 
boundaries; 

f) phase angle; 
a absorption coefficient; 
n refractive-index. 

Fig. 3 shows our acetone measurements of P0/P\Ock as a func- 
tion of d, and these are clearly consistent with (1): damped oscil- 
lations are observed to be riding on an exponentially increasing 
baseline. Similar results were obtained for water, except that 
fewer oscillations were observed. (Though water's index of re- 
fraction at 6.8 GHz is roughly twice that of acetone's, water's 
absorption coefficient is more than four times larger.) Thus, in 
the case of water we could not access as large a range of water 
depths as we could for acetone due to the limitations of our mi- 
crowave amplifier. 

III. RESULTS 

Regarding Fig. 3, we infer a from the exponential increase 
in P0/P\ock at large depths, while the wavelength of the sinu- 
soidal variations in P0/P\Ock yields n. The results for acetone 
and water are given in Table I. along with estimates of the mea- 
surements' precision. Table I also presents theoretical estimates 
of a and n based on the empirical Cole-Cole equation, a mod- 
ified version of the familiar Debye equation [14], [15]. Clearly, 
in its crudest realization for this type of measurement (i.e., an 

4As an aside, we note that it should be possible to use the atomic candle to 
access the liquid's latent heat of vaporization. For example, in the case of ace- 
tone it is relatively straightforward to show that the rate of change of acetone 
depth d due to evaporation is related to acetone's latent heat of vaporization 

AQ,.„„ d = Boxp 
AC>v 

AT,;, 

where B is a constant. /.• is Boltzmann's constant, and T|iq is the liquid tem- 
perature. For Beer's law absorption, where o is the absorption coefficient. P — 
—oiiPnp~ad. so that if dP/dt is measured as a function of acetone tempera- 
ture it should be possible to ascertain AC?vf>p. 
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Fig. 3. Experimental results for acetone at 21 °C. Linear fit between 1.7 and 
3.6 cm depths was used to determine n. After subtracting the linear slope, the 
oscillation wavelength yielded n. The dashed curve is simply an aid to guide 
the eve. 

TABLE  1 
ABSORPTION COEFFICIENT n AND REFRACTIVE INDEX 71 OF LIQUID ACKTONE 

AND WATER AT 6.8 GHz. NOTE THAT THE VALUES LISTED FOR THE EMPIRICAL 
COLE-COLE EQUATION ARE ESTIMATES. SINCE THE PARAMETERS EMPLOYED 

IN THE EQUATION ARE DEPENDENT ON TEMPERATURE AND WAVELENGTH. 
AND ARE THEMSELVES SUBJECT TO EXPERIMENTAL UNCERTAINTY 

a |cm''] n 

CHJCOCHJ 
Atomic Candle 0.817 ±0.026 4.623 ± 0.026 

Cole-Cole Equation 0.817 4.591 

H:0 
Atomic Candle 4.07 ± 0.03 8.27 ± 0.09 

Cole-Cole Equation 4.12 8.45 

open dish of evaporating liquid that attenuates a non-planewave 
microwave signal), the atomic candle has achieved excellent ac- 
curacy and precision in the determination of a complex dielec- 
tric constant. Moreover, the atomic candle did not need to be 
calibrated to a known standard [16]. For completeness, we note 
that it would be straightforward to construct candles based on 
the hyperfme transitions of Na23, Rb85, and Cs133, so as to make 
dielectric measurements at 1.8. 3.0, and 9.1 GHz. respectively. 
It might even be possible to base an atomic candle on a Rydberg 
transition [17], where a much broader range of microwave fre- 
quencies would be accessible. 

IV. DISCUSSION 

At its most specific, this paper has demonstrated the use of 
an atomic candle for the precise measurement of a material's 
absorption coefficient and refractive index. Of course, general- 
izing this atomic candle application to the optical and infrared 
regime, one could imagine making precise cross section mea- 
surements for resonant transitions between atomic and molec- 
ular eigenstates, thereby obtaining very accurate information on 
the overlap of eigenstate wavefunctions.5  However, it is our 

sThe microwave absorption of acetone and water in their condensed phase 
is properly attributed to a relaxation effect rather than resonant absorption; see 
[18]. 

opinion that the candle's utility may extend well beyond the 
particular work discussed here, since we have basically demon- 
strated a general means for observing subtle intensity changes 
of an electromagnetic signal, a fundamentally different problem 
from that of detecting weak signals in the presence of noise. 

In one possible application, a remote transmitter's output 
power could be detected, amplified, and made part of a local 
atomic candle, with the remote transmitter's output power 
adjusted via radio-control. Fluctuations in this atomic candle's 
correction signal would then provide very precise information 
on fluctuations in the number of scatters/absorbers along the 
transmitter-to-receiver propagation path. The propagation path 
could be terrestrial, perhaps using an optical atomic candle for 
environmental monitoring, or space-to-Earth. One might even 
envision placing two atomic candles at remote locations, with one 
candle transmitting a reference signal to the other. In well-known 
fashion, the range between the transmitter and receiver would 
be determined by the transmitted signal's propagation time, 
while Doppler shifts would provide information on the relative 
radial velocity. By comparing the intensity of the transmitted 
candle-field with the local candle-field, it might be possible to 
augment the range and velocity information and detect changes 
in the propagation geometry Transverse to the propagation path. 

It seems clear to us that with enough imagination many 
other atomic candle applications may be envisioned, and 
some of these will be much more novel than those discussed 
above. Consequently, we believe that the true value of the 
present work is not so much in describing a new means for 
precise absorption/refractive-index measurements, though this 
in itself is valuable, but rather in demonstrating the atomic 
candle's fundamental utility for measurement science. With the 
demonstration of optical and infrared atomic candles, and with 
a demonstration of these candles' long-term intensity stability, 
it is our hope that the general usefulness of atomic candles for 
measurement science will be realized. 
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